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Abstract: - In this paper, we talk about a mixture of one-parameter Lindley and inverse Weibull distributions 
(MLIWD). First, We introduce and discuss the MLIWD. Then, we study the main statistical properties of the 
proposed mixture and provide some graphs of both the density and the associated hazard rate functions. After 
that, we estimate the unknown parameters of the proposed mixture via two estimation methods, namely, the 
generalized method of moments and maximum likelihood. In addition, we compare the estimation methods via 
some simulation studies to determine the efficacy of the two estimation methods. Finally, we evaluate the 
performance and behavior of the proposed mixture with different numerical examples and real data application 
in survival analysis. 
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1 Introduction 
In the past few decades, mixture models have been 
recognized as an appropriate model for describing 
different types of data in many applications such as 
engineering, reliability studies, life testing problems 
and many other fields. In general, a mixture 
component is made by combining two or more 
components using weights which must add up to one. 
Here, we propose a mixture of one-parameter 
Lindley and inverse Weibull distributions as an 
example of the mixture that are used in real-life 
applications. It is well known that Lindley 
distribution (LD) is important in life-time data 
and reliability.  Similarly, inverse Weibull 
distribution (IWD) is used to model a variety of 
both reliability and failure data from life testing. 
Therefore, a mixture of Lindley and inverse 
Weibull distributions (MLIWD) is proposed. 
Lindley distribution was proposed by Lindley 
(1958) in the context of Fiducial and Bayesian 
statistics to illustrate the difference between 
fiducial and posterior distributions. Lindley 
distribution was studied by [1] with various 
properties and applications. Recently, the 
mixture of two one-parameter Lindley 

distributions are proposed in [2] with 
applications in life testing  and also, the mixture 
of Lindley and Weibull distributions is applied 
in carbon fibers and in a sample of bladder 
patients, see [3]. Inverse Weibull distribution, 
has received attention in the literature over the 
years. IWD is introduced in reliability data 
application in [4]. A mixture of TIWD with a 
graph and hazard rate are discussed in [5]. In 
addition, the cumulative and the accumulated 
hazard function are discussed in [6]. The 
organized  of the paper is as follows: in Section 
1 we introduce a MLIWD, and discuss previous 
related studies of these distributions. In Section 
2, a MLIWD is familiarized and discussed. 
Section 3 contains the statistical properties of the 
proposed mixture LIWD with some graphs of the 
density and hazard rate functions. In Section 4, 
we estimate the unknown parameters of the 
underlying mixture LIWD using the generalized 
method of moments and the maximum 
likelihood method. A simulation study of the 
proposed mixture LIWD is discussed in Section 
5. In addition, we calculate some measures from 
the point estimation of the MLIWD. Finally, in 
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Section 6 we apply the proposed mixture model 
to real dataset in survival analysis and note our 
conclusion in Section 7. 
 

2 Proposed Mixture Model  
A MLIWD is considered in this section. We present 
the mathematical formulation of the mixture with 
some graphs of the pdf according to the unimodal and 
bimodal cases. However, we illustrate some 
statistical properties of the proposed MLIWD. The 
pdf of the MLIWD takes the form 

𝑓(𝑥; 𝑝, 𝜃, 𝜆, 𝑘)

= 𝑝 [
𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥]

+ (1 − 𝑝) [
𝑘

𝜆𝑘
𝑥−(𝑘+1)𝑒−(𝜆𝑥)−𝑘

] ; 0

< 𝑝 < 1;   𝑥 > 0;   𝜃, 𝜆, 𝑘

> 0,                                    (1) 
                  

  

where 𝑝 is the mixing parameter (proportion). The 
first component in (1) considers the pdf of a LD with 
one parameter 𝜃, while the second component shows 
the pdf of an IWD with shape parameter 𝑘 and scale 
parameter 𝜆. Thus, the cdf of the MLIWD can be 
found as follows 

𝐹(𝑥; 𝑝, 𝜃, 𝜆, 𝑘) = 𝑝𝐹1(𝑥; 𝜃) + (1
− 𝑝)𝐹2(𝑥; 𝜆, 𝑘) 

= 𝑝 [1 −
(𝜃 + 1 + 𝜃𝑥)𝑒−𝜃𝑥

𝜃 + 1
] + (1

− 𝑝) [𝑒−(𝜆𝑥)−𝑘
] ;  𝑥 > 0, 

𝜃, 𝜆, 𝑘 > 0;  0 < 𝑝 < 1.               (2) 
where 𝐹1(𝑥; 𝜃) is the cdf of LD with one 
parameter θ and 𝐹2(𝑥; 𝜆, 𝑘) is the cdf of IWD 
with two parameters (𝜆, 𝑘). Figure 1 show 
different shapes of the MLIWD according to 
unimodal and bimodal cases. 
 

Figure 1: pdf plot of MLIWD with  (a) ϴ = (𝑝 =
0.25, 𝜃 = 0.5, 𝜆 = 0.75, 𝑘 = 2.25) (b) ϴ = (𝑝 =
0.7, 𝜃 = 0.75, 𝜆 = 1.25, 𝑘 = 4.25) . 
 
3 Properties of the MLIWD 
In this section, we explain the main statistical 
properties of the MLIWD and study the behavior of 
the hazard rate function (HRF) as 𝑥 tends to zero or 
infinity with some graphs of the HRF according to 
the unimodal and bimodal cases. It should be noted 
that the discussed properties include (the mean, 
variance, mode, median, skewness (Sk) and kurtosis 
(Kur), reliability and HRF).  
 
1. Mean and Variance 
The mean of the MLIWD can be obtained  

𝐸(𝑋) = 𝑝 (
𝜃 + 2

𝜃(𝜃 + 1)
)

+ (1 − 𝑝)𝜆−1Γ(1 −
1

𝑘
) ;   𝑥

> 0;  0 < 𝑝 < 1;  𝜃, 𝜆 > 0; k > 1,
(3) 

while the variance is found by  

V(X) = 𝑝 (
2(𝜃+3)

𝜃2(𝜃+1)
− 𝑝 (

𝜃+2

𝜃(𝜃+1)
)

2

) + (1 −

𝑝) (𝜆−2Γ (1 −
2

𝑘
) − (1 − 𝑝)𝜆

−2
Γ2 (1 −

1

𝑘
)) −

 2𝑝(1 − 𝑝) (
𝜃+2

𝜃(𝜃+1)
) 𝜆−1𝛤 (1 −

1

𝑘
) ;  𝑥 >

0;   𝜃, 𝜆 > 0;    𝑘 > 2.                                 (4 )  
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2. Mode and Median 
The modes of the proposed mixture are obtained 
by solving the nonlinear equation below with 
respect to 𝑥 

𝑝 𝜃2 𝑒−𝜃 𝑥

(𝜃+1)
(1 − 𝜃(1 + 𝑥)) +

(1−𝑝) 𝑘 𝑒−(𝜆 𝑥)−𝑘

𝜆𝑘  𝑥 =

0.                                                                             (5)  
Based on the cdf of the proposed mixture model, we 
obtain the median of the MLIWD by solving the 
equation below with respect to 𝑥 
𝐹(𝑥; 𝑝, 𝜃, 𝜆, 𝑘) = 𝑝𝐹1(𝑥; 𝜃) + (1 −
𝑝)𝐹2(𝑥; 𝜆, 𝑘) = 0.5 ,                                            (6)                
where the first component 𝐹1(𝑥; 𝜃) considers the cdf 
of the LD with parameter 𝜃, while the second 
component 𝐹2(𝑥; 𝜆, 𝑘) is the cdf of the IWD with 
parameters 𝜆 and 𝑘, as given in (2). Table 1 shows 
the mode and median of the MLIWD with different 
choices of parameter according to the unimodal and 
bimodal cases. 
 
Table 1: The mode(s) and median of the MLIWD 

Modality 𝒑  θ 𝝀 k Mode(s) Median 

Unimodal 

case 

0.25 0.5 0.75 2.25 1.1318 1.6920 

0.55 0.5 0.75 2.25 1.1304 1.9425 

0.75 0.5 0.75 2.25 1.1276 2.2100 

0.95 0.5 0.75 2.25 1.1082 2.5589 

Bimodal 

case 

0.70 0.75 0.5 4.25 0.3333   

1.2215  

1.9479 

0.70 0.75 0.75 4.25 0.3333   

0.7796 

1.5213 

0.70 0.75 1.00 4.25 0.3333   

0.5664 

1.2884 

0.70 0.75 1.25 4.25 0.3333   

0.4404 

1.1471 

We note that from Table 1, the modes and median are 
affected by changes in  𝑝 and 𝜆 according to both the 
unimodal and bimodal cases. The modes and median 
decrease as scale parameter 𝜆 increases. However, 
when mixing proportion 𝑝 increases, then the modes 
decrease while the median values increase. 
 
3. Measures of Skewness (Sk) and Kurtosis 
(Kur) 
The Sk coefficient describes the degree of asymmetry 
of a distribution around its mean, while the Kur 
coefficient measures the flatness of the distribution. 
Using the central moments, the Sk and Kur  
coefficients can be derived. The rth moment about 
the origin of the MLIWD is equal to  

𝜇𝑟
′ = 𝑝 (

𝑟! (𝜃 + 𝑟 + 1)

𝜃𝑟(𝜃 + 1)
)

+ (1 − 𝑝)
1

𝜆𝑟
Γ (1 −

𝑟

𝑘
)  ,    𝑟

= 1,2, … . . ;   𝑘 > 𝑟.        (7) 
Then we get the Sk and Kur, respectively, as follows 

𝑆𝑘 =
𝜇3

𝜎3
,   𝐾𝑢𝑟 =

𝜇4

𝜎4
,        (8)   

where 𝜇3 = 2𝜇3 − 3𝜇2
′𝜇 + 𝜇3

′, 𝜇4 = −3𝜇4 +

6𝜇2
′𝜇2 − 4𝜇3

′𝜇 + 𝜇4
′  and 𝜎3 = (𝑉𝑎𝑟(𝑋))

3

2 
Table 2 shows some values of the Sk and Kur based 
on the unimodal and bimodal cases of the proposed 
MLIWD. 
 
Table 2: Skewness and kurtosis for MLIWD 

Modality 𝒑  θ 𝝀 k Sk Kur 

Unimodal 

case 

0.25 0.5 0.75 2.25 1.8501 5.1293 

0.55 0.5 0.75 2.25 0.8743 6.3589 

0.75 0.5 0.75 2.25 0.0181 6.7651 

Bimodal 

case 

0.70 0.75 0.75 4.25 2.0062 10.3668 

0.70 0.75 1.00 4.25 2.0712 9.4315 

0.70 0.75 1.25 4.25 2.0690 8.9980 

It also shows that the MLIWD is right or positively 
Sk. However, it can be seen that the Sk and Kur are 
affected significantly by changes in the  𝑝 and 𝜆 
parameters according to the unimodal and bimodal 
cases. The Kur values increase when mixing 
proportion 𝑝 increases and they decrease when scale 
parameter 𝜆 increases. Moreover, one value of the Sk 
is close to zero, which indicates it is somehow close 
to the standard normal. 
 
4. Reliability (R) and Failure Rate Functions 
(HRF) 
Here, we illustrates the reliability and hazard rate 
functions of the MLIWD. We study the behavior of 
the HRF as 𝑥 tends to zero or infinity with some plots 
of the HRF according to the unimodal and bimodal 
cases. Therefore, the reliability and hazard rate 
functions for the MLIWD can be obtained, 
respectively, as given below 

𝑅(𝑥; 𝑝, 𝜃, 𝜆, 𝑘) = 𝑝𝑅1(𝑥; 𝜃)
+ (1 − 𝑝)𝑅2(𝑥; 𝜆, 𝑘)

= 𝑝 [
(𝜃 + 1 + 𝜃𝑥)𝑒−𝜃𝑥

𝜃 + 1
]

+ (1 − 𝑝) [1 − 𝑒−(𝜆𝑥)−𝑘
] ; 𝑥

> 0; 𝜃, 𝜆, 𝑘 > 0,           (9) 
and 
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𝑟(𝑥; 𝑝, 𝜃, 𝜆, 𝑘) =
𝑝𝑓1(𝑥;𝜃)+(1−𝑝)𝑓2(𝑥;𝜆,𝑘)

𝑝𝑅1(𝑥;𝜃)+(1−𝑝)𝑅2(𝑥;𝜆,𝑘)
=

𝑝[
𝜃2

𝜃+1
(1+𝑥)𝑒−𝜃𝑥]+(1−𝑝)[

𝑘

𝜆𝑘𝑥−(𝑘+1)𝑒−(𝜆𝑥)−𝑘
]

𝑝[
(𝜃+1+𝜃𝑥)𝑒−𝜃𝑥

𝜃+1
]+(1−𝑝)[1−𝑒−(𝜆𝑥)−𝑘

]
 .   (10)  

Then, the HRF of the MLIWD satisfies the limits, as 
illustrated in Lemma below.  
 
Lemma 

𝑙𝑖𝑚
𝑥→0

𝑟(𝑥; 𝑝, 𝜃, 𝜆, 𝑘) =
𝑝𝜃2

𝜃 + 1
 ,    (11) 

and 
𝑙𝑖𝑚
𝑥→∞

𝑟(𝑥; 𝑝, 𝜃, 𝜆, 𝑘) = 0.   (12) 
Proof 
Applying the limit concept to (11), we get 
𝑙𝑖𝑚
𝑥→0

𝑟(𝑥; 𝑝, 𝜃, 𝜆, 𝑘) =

𝑙𝑖𝑚
𝑥→0

𝑝[
𝜃2

𝜃+1
(1+𝑥)𝑒−𝜃𝑥]+(1−𝑝)[

𝑘

𝜆𝑘𝑥−(𝑘+1)𝑒−(𝜆𝑥)−𝑘
]

𝑝[
(𝜃+1+𝜃𝑥)𝑒−𝜃𝑥

𝜃+1
]+(1−𝑝)[1−𝑒−(𝜆𝑥)−𝑘

]
  

= 𝑙𝑖𝑚
𝑥→0

𝐴 + 𝐵

𝐶 + 𝐷
= 𝑙𝑖𝑚

𝑥→0

𝐴

𝐶 + 𝐷
+ 𝑙𝑖𝑚

𝑥→0

𝐵

𝐶 + 𝐷
 ,   (13) 

where 

𝐴 = 𝑝 [
𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥] , 𝐵 = (1 −

𝑝) [
𝑘

𝜆𝑘 𝑥−(𝑘+1)𝑒−(𝜆𝑥)−𝑘
] , 𝐶 =  𝑝 [

(𝜃+1+𝜃𝑥)𝑒−𝜃𝑥

𝜃+1
]  

 and 𝐷 = (1 − 𝑝) [1 − 𝑒−(𝜆𝑥)−𝑘
]. Therefore, we 

solve the first part of (13) as follows 

𝑙𝑖𝑚
𝑥→0

𝐴

𝐶 + 𝐷

= 𝑙𝑖𝑚
𝑥→0

𝑝 [
𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥]

𝑝 [
(𝜃+1+𝜃𝑥)𝑒−𝜃𝑥

𝜃+1
] + (1 − 𝑝)[1 − 𝑒−(𝜆𝑥)−𝑘

]

=

𝑝𝜃2

𝜃+1

𝑝 + (1 − 𝑝)
=

𝑝𝜃2

𝜃 + 1
.    (14) 

To solve the second part of (13) we need to divide 
𝐵

𝐶+𝐷
 by 𝐵

𝐶+𝐷
 and take the limit as given below 

𝑙𝑖𝑚
𝑥→0

(1−𝑝)𝑘

𝜆𝑘

𝑒(𝜆𝑥)−𝑘
𝑝

𝑥−(𝑘+1) [
(𝜃+1+𝜃𝑥)𝑒−𝜃𝑥

𝜃+1
] + 

𝑒(𝜆𝑥)−𝑘(1−𝑝)

𝑥−(𝑘+1) [1−𝑒−(𝜆𝑥)−𝑘
]

=

(1−𝑝)𝑘

𝜆𝑘

∞
= 0.                            (15)  

Hence, by substituting (14) and (15) in (13), the first 
part of Lemma is proven when 𝑥 tends to zero. Now, 
to prove (12) in Lemma we need to solve the limit as 
𝑥 tends to ∞. So, we divide the HRF 𝑟(𝑥; 𝑝, 𝜃, 𝜆, 𝑘) 
by 𝑒−𝜃𝑥 and solve the limit using some of the limit 
properties as follows 

𝑙𝑖𝑚
𝑥→∞

 𝑟(𝑥; 𝑝, 𝜃, 𝜆, 𝑘)

= 𝑙𝑖𝑚
𝑥→∞

𝑝𝜃2

𝜃+1
(1 + 𝑥) +

(1−𝑝)𝑘

𝜆𝑘 𝑥−(𝑘+1)𝑒−(𝜆𝑥)−𝑘+𝜃𝑥

𝑝 [
(1+𝜃(1+𝑥))

𝜃+1
] + (1 − 𝑝)[1 − 𝑒−(𝜆𝑥)−𝑘+𝜃𝑥]

 

= 𝑙𝑖𝑚
𝑥→∞

𝐴 + 𝐵

𝐶 + 𝐷
= 𝑙𝑖𝑚

𝑥→∞

𝐴

𝐶 + 𝐷
+ 𝑙𝑖𝑚

𝑥→∞

𝐵

𝐶 + 𝐷
. (16) 

In (16) we assume that 𝐴 =
𝑝𝜃2

𝜃+1
(1 + 𝑥), 𝐵 =

(1−𝑝)𝑘

𝜆𝑘 𝑥−(𝑘+1)𝑒−(𝜆𝑥)−𝑘+𝜃𝑥, 𝐶 = 𝑝 [
(1+𝜃(1+𝑥))

𝜃+1
] 

and 𝐷 = (1 − 𝑝) [1 − 𝑒−(𝜆𝑥)−𝑘+𝜃𝑥]. Now, to 

solve the first limit in (16) we divide the quantity 𝐴

𝐶+𝐷
 

by (1 + 𝑥) and then solve the limit when 𝑥 → ∞. 
Knowing that, 𝑙𝑖𝑚

𝑥→∞
𝐷 = 𝑙𝑖𝑚 

𝑥→∞
𝑝2 [1 −

𝑒−(𝜆𝑥)−𝑘+𝜃𝑥] = −∞ since −(𝜆𝑥)−𝑘 + 𝜃𝑥 > 0 

and if 𝑥 → ∞ then −(𝜆𝑥)−𝑘 + 𝜃𝑥 → ∞. Thus, 

𝑙𝑖𝑚
𝑥→∞

𝐴

𝐶+𝐷
= 𝑙𝑖𝑚

𝑥→∞

𝑝𝜃2

𝜃+1
𝑝

(𝜃+1)(1+𝑥)
+

𝑝𝜃

(𝜃+1)
−∞

= 0.  (17) 

Next, we use the following definition to solve the 
second limit in (16). 
 
Definition 
Let 𝑓(𝑥), 𝑔(𝑥)  be functions defined in a reduced 
neighborhood of 𝑎, where 𝑎 is a real number ∞ or - 
∞. Then, we say that 𝑓 ≅ 𝑔 at 𝑎 if lim

𝑥→𝑎
(

𝑓(𝑥)

𝑔(𝑥)
) = 1. 

Now for the sake of simplicity, we multiply 𝐵 =
(1−𝑝)𝑘

𝜆𝑘 (
𝑥−𝑘

𝑥
) 𝑒−(𝜆𝑥)−𝑘+𝜃𝑥 by −𝜆−𝑘

−𝜆−𝑘 to make the limit 
easy to solve using an equivalent function. Thus, we 

have 𝐵 =
(1−𝑝)𝑘

𝜆𝑘 (
1

−𝜆−𝑘)
(−𝜆𝑥)−𝑘

𝑥
𝑒−(𝜆𝑥)−𝑘+𝜃𝑥 =

(
−(1−𝑝)𝑘

𝑥
) (−𝜆𝑥)−𝑘𝑒

−𝑥−𝑘[𝜆−𝑘−
𝜃

𝑥−(𝑘+1)]. Suppose 

𝑓(𝑥) = 𝜆−𝑘 −
𝜃

𝑥−(𝑘+1)  and 𝑔(𝑥) = 𝜆−𝑘 , then 

𝑙𝑖𝑚
𝑥→∞

(
𝑓(𝑥)

𝑔(𝑥)
) = 𝑙𝑖𝑚

𝑥→∞
(

𝜆−𝑘 − 
𝜃

𝑥−(𝑘+1)

𝜆−𝑘 ) = 𝑙𝑖𝑚
𝑥→∞

(1 −

𝜃

𝜆−𝑘𝑥−(𝑘+1)) =1, which implies that 𝑓 ≅ 𝑔 and 
we get 

𝑒
−𝑥−𝑘[𝜆−𝑘−

𝜃

𝑥−(𝑘+1)] ≅ 𝑒−(𝜆𝑥)−𝑘
.   (18) 

Therefore, from (18) we have 
𝑙𝑖𝑚
𝑥→∞

𝐵

= 𝑙𝑖𝑚
𝑥→∞

[−(1

− 𝑝)𝑘 (
1

𝑥
)] 𝑙𝑖𝑚

𝑥→∞
[−(𝜆𝑥)−𝑘𝑒−(𝜆𝑥)−𝑘

] = 0, (19) 

and 
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𝑙𝑖𝑚
𝑥→∞

𝐵

𝐶 + 𝐷
=

0

∞
= 0.    (20) 

By substituting (17) and (19) in (16), we prove the 
required limit in Lemma (3.1). Figure 2 (a-b) shows 
two cases of the HRF according to the unimodal and 
bimodal cases for the MLIWD. Further, we have 
shown that the HRF values are limited by the interval 

(
𝑝𝜃2

𝜃+1
, 0). To study the behavior of the HRF curve, 

two cases arise as follows: 
In unimodal case, the HRF curve increases in 
(0, 𝑥1

∗ ) until it arrives the peak of the curve at 𝑥1
∗ 

(mode value) [see Figure 2(a)]. Then, the curve 
decreases gradually in the interval (𝑥1

∗, 𝑥2
∗ )and 

eventually assumes a value of zero when 𝑥2
∗ → ∞. 

In the bimodal case, the HRF curve increases until 
it reaches the value of the first peak in the interval 
(0, 𝑥1

∗ ), while it decreases in the period (𝑥1
∗, 𝑥2

∗ ). 
Next, the curve increases slowly to form a second 
peak at 𝑥3

∗ in (𝑥2
∗, 𝑥3

∗ ). After the curve has reached 
all the peaks or mode values, the curve decreases 
gradually in the interval (𝑥3

∗, 𝑥4
∗ ) until it reaches 

zero as 𝑥4
∗ → ∞ [see Figure 2(b)]. We also noticed 

that the first top of the curve has a higher peak than 
the second top. 

 
Figure 2: HRF plot of MLIWD with  (a) ϴ = (𝑝 =
0.25, 𝜃 = 0.5, 𝜆 = 0.75, 𝑘 = 2.25) (b) ϴ = (𝑝 =
0.7, 𝜃 = 0.75, 𝜆 = 1.25, 𝑘 = 4.25) . 
 
4 Estimation 
This section discuss two methods to estimate the 
parameters of the proposed MLIWD, namely, the 
generalized method of moments and the maximum 

likelihood method denoted by GMM and MLM, 
respectively. 
 
4.1 Generalized Method of Moments 
Here, we present the generalized method of moments 
(GMM) estimators for the parameters (𝑝, 𝜃, 𝜆, 𝑘) of 
the MLIWD by using the moment conditions and the 
definition of GMM estimators [see Hall (2005)]. 
First, we need to write the moment conditions of the 
MLIWD as follows  
𝑥𝑖 − 𝑝

𝜃+2

𝜃(𝜃+1)
+ (1 − 𝑝)𝜆−1Γ (1 −

1

𝑘
) =

0 ,      𝑘 > 1 , (21)    
𝑥𝑖

2 − 𝑝
2(𝜃+3)

𝜃2(𝜃+1)
+ (1 − 𝑝)𝜆−2Γ (1 −

2

𝑘
) =

0 ,    𝑘 > 2 ,        (22)  
𝑥𝑖

3 − 𝑝
6(𝜃+4)

𝜃3(𝜃+1)
+ (1 − 𝑝)𝜆−3Γ (1 −

3

𝑘
) =

0 ,    𝑘 > 3 ,   (23)  
and 
𝑥𝑖

4 − 𝑝
24(𝜃+5)

𝜃4(𝜃+1)
+ (1 − 𝑝)𝜆−4Γ (1 −

4

𝑘
) =

0 ;  𝑖 = 1, 2, … , 𝑛 ;  𝑘 > 4.  (24)  
Now, to get the GMM estimators we must discover 
the parameter values that minimize the coast function 
𝑄𝑛(𝛩), 𝛩 = (𝑝, 𝜃, 𝜆, 𝑘) of the MLIWD, as given 
below  
𝑄𝑛(𝛩 )

= 𝑛−1 ∑[𝑥𝑖 − 𝐸(𝑋) 𝑥𝑖
2 − 𝐸(𝑋2) 𝑥𝑖

3 − 𝐸(𝑋3) 𝑥𝑖
4 − 𝐸(𝑋4)]′

𝑛

𝑖=1

 

× [

1
0

0
1

0 0
0 0

0 0 1 0
0 0 0 1

] 𝑛−1 ∑

[
 
 
 
 
𝑥𝑖 − 𝐸(𝑋)

𝑥𝑖
2 − 𝐸(𝑋2)

𝑥𝑖
3 − 𝐸(𝑋3)

𝑥𝑖
4 − 𝐸(𝑋4)]

 
 
 
 𝑛

𝑖=1

 

= (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
)
2

− (
2∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
)𝐸(𝑋) + (𝐸(𝑋))

2
+

(
∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛
)
2

− (
2∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛
) 𝐸(𝑋2)  

+(𝐸(𝑋2))2 + (
∑ 𝑥𝑖

3𝑛
𝑖=1

𝑛
)
2

− (
2∑ 𝑥𝑖

3𝑛
𝑖=1

𝑛
)𝐸(𝑋3) +

(𝐸(𝑋3))
2
+ (

∑ 𝑥𝑖
4𝑛

𝑖=1

𝑛
)
2

  

−(
2∑ 𝑥𝑖

4𝑛
𝑖=1

𝑛
) 𝐸(𝑋4) + (𝐸(𝑋4))

2
,    (25)  

where 
𝐸(𝑋) = 𝑝

𝜃+2

𝜃(𝜃+1)
+ (1 − 𝑝)𝜆−1𝛤 (1 −

1

𝑘
),  

𝐸(𝑋2) = 𝑝
2(𝜃+3)

𝜃2(𝜃+1)
+ (1 − 𝑝)𝜆−2𝛤 (1 −

2

𝑘
),  

𝐸(𝑋3) = 𝑝
6(𝜃+4)

𝜃3(𝜃+1)
+ (1 − 𝑝)𝜆−3𝛤 (1 −

3

𝑘
),  

and 
𝐸(𝑋4) = 𝑝

24(𝜃+5)

𝜃4(𝜃+1)
+ (1 − 𝑝)𝜆−4𝛤 (1 −

4

𝑘
).  
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Next, we differentiate (21-24) with respect to each 
component of (𝑝, 𝜃, 𝜆, 𝑘) and equate these derivative 
equations to zeroto obtain the GMM estimators. 
Therefore, we have the following system of non-
linear equations  
𝜕𝑄𝑛(𝛩 )

𝜕𝑝
= 2 [(

(1−𝑝)𝛤(1−
4

𝑘
)

𝜆4 +

24𝑝(5+𝜃)

𝜃4(1+𝜃)
) (

24(5+𝜃)

𝜃4(1+𝜃)
−

𝛤(1−
4

𝑘
)

𝜆4 )] = 0,   (26)  

𝜕𝑄𝑛(𝛩 )

𝜕𝜃
= 48𝑝 [(

(1−𝑝)𝛤(1−
4

𝑘
)

𝜆4 +

24𝑝(5+𝜃)

𝜃4(1+𝜃)
)(

1

𝜃4(1+𝜃)
− (

𝜃3(4+5𝜃)(5+𝜃)

(𝜃4(1+𝜃))
2 ))] = 0,

(27)  
𝜕𝑄𝑛(𝛩 )

𝜕𝜆
= −8(1 − 𝑝) [(

(1−𝑝)𝛤(1−
4

𝑘
)

𝜆4 +

24𝑝(5+𝜃)

𝜃4(1+𝜃)
)] [

𝛤(1−
4

𝑘
)

𝜆5 ] = 0, (28)  

𝜕𝑄𝑛(𝛩 )

𝜕𝑘
= 8(1 − 𝑝) [(

(1−𝑝)𝛤(1−
4

𝑘
)

𝜆4 +

24𝑝(5+𝜃)

𝜃4(1+𝜃)
)𝜓 (1 −

4

𝑘
) (

𝛤(1−
4

𝑘
)

𝜆4𝑘2 )] = 0, (29)  

where 𝜓 is the digamma function. Finally, we solve 
the system of equations (26-29) and get the GMM 
estimates of the underlying model parameters. We 
use the (gmm) package in R to solve the systems and  
the numerical results are shown later in Section 5.  
 
4.2 Maximum Likelihood Estimation 
The MLE is used in a wide range of statistical 
analyses. In this subsection, we obtain the MLEs for 
the unknown parameters of the MLIWD by finding 
the parameters that maximize the likelihood function, 
given the observations. So, let 𝑥1, 𝑥2, ……… , 𝑥𝑛 be 
a random sample from the MLIWD, then the log-
likelihood function is given as  

𝐿∗ = log 𝐿 = ∑ log (𝑝
𝜃2

𝜃+1
(1 + 𝑥𝑖)𝑒

−𝜃𝑥𝑖 +𝑛
𝑖=1

(1 − 𝑝)
𝑘

𝜆𝑘 𝑥𝑖
−(𝑘+1)

𝑒−(𝜆𝑥𝑖)
−𝑘

) ; 𝑥 > 0, 𝜃, 𝜆, 𝑘 > 0,

0 < 𝑝 < 1.       (30)  
Now, by differentiating the log-likelihood function in 
(30) with respect to each parameters (𝑝, 𝜃, 𝜆, 𝑘) we 
get the first order derivatives of  𝐿∗. Next, by equating 
these derivative equations to zero and solving this 
system of equations, we obtain the MLEs of the four 
unknown parameters of the proposed MLIWD. The 
system of equations is shown below  
𝜕𝐿∗

𝜕𝑝
= ∑

𝑓1(𝑥𝑖;𝜃)−𝑓2(𝑥𝑖; 𝜆,𝑘)

𝑝𝑓1(𝑥𝑖;𝜃)+(1−𝑝)𝑓2(𝑥𝑖; 𝜆,𝑘)
𝑛
𝑖=1 = 0 , (31)  

𝜕𝐿∗

𝜕𝜃
= ∑

 𝑝(1+𝑥𝑖)𝑒
−𝜃𝑥𝑖[

𝜃(2+𝜃)

(𝜃+1)2
−𝑥𝑖

𝜃2

(𝜃+1)
]

𝑝𝑓1(𝑥𝑖;𝜃)+(1−𝑝)𝑓2(𝑥𝑖;𝜆,𝑘)
𝑛
𝑖=1 = 0 ,

(32)  
 
𝜕𝐿∗

𝜕𝜆
=

∑
(1−𝑝)𝑘𝑥𝑖

−(𝑘+1)
𝑒−(𝜆𝑥𝑖)

−𝑘
[𝑘𝑥𝑖

−𝑘𝜆−(2𝑘+1)−𝑘𝜆−(𝑘+1)]

𝑝𝑓1(𝑥𝑖;𝜃)+(1−𝑝)𝑓2(𝑥𝑖; 𝜆,𝑘)
𝑛
𝑖=1 =

0 ,   (33)  

𝜕𝐿∗

𝜕𝑘
= ∑

(1−𝑝)𝑥𝑖
−(𝑘+1)

𝑒−(𝜆𝑥𝑖)
−𝑘

𝑝𝑓1(𝑥𝑖;𝜃)+(1−𝑝)𝑓2(𝑥𝑖;𝜆,𝑘)

𝑛
𝑖=1 ×

 [
𝜆𝑘(1−𝑘 log𝜆)

𝜆2𝑘
−

𝑘 log𝑥𝑖

𝜆𝑘
+

𝑘(𝜆𝑥𝑖)
−𝑘 log(−𝜆𝑥𝑖)

𝜆𝑘
] =

0 ,    (34)  
where 𝑓1(𝑥𝑖; 𝜃) and 𝑓2(𝑥𝑖; 𝜆, 𝑘) are the pdf of the 
LD and IWD, respectively. We get the ML estimators 
for the unknown parameters of the proposed MLIWD 
by solving the system of equations (31-34) by using 
some R packages with several numerical techniques 
to find the maximum value such as the Newton-
Raphson and Broyden methods. The results are 
shown in Section 5.  
 
5 Simulation Studies 
Here, we perform some simulation studies for the 
proposed mixture model, including solving the 
nonlinear equations of the GMM and ML given in 
Section 4. Moreover, we analyze some statistical 
measures of the estimates in to examine the 
performance of the quality of the estimates. Thus, we 
compute the bias, (MSE) mean squared error and 
the(RE) relative efficiency of the estimates. In 
addition, we construct the (CI) confidence interval of 
the estimated parameters for the MLIWD according 
to the GMM and ML estimation methods. We also 
compute the (CP) coverage probability and average 
length of these estimated intervals. The (CP) is a 
statistical technique for calculating the amount of 
time that the (CI)  takes up or covering the true value 
of the parameters. We generate random samples 30, 
50 and 100 in size from the MLIWD model according 
to the unimodal and bimodal cases. The random 
samples are generated using the function (rlindley) 
(rinvweibull) in the R software for the components 
mixture. We solve the system of nonlinear equations 
(21-24) for the GMM and (31-34) for the ML 
methods using some R software packages such as 
(gmm) and (nleqslv). All the numerical results for the 
simulation studies of the MLIWD are shown and 
discussed in Tables 3 and 4. In Table 3, we conclude 
that the ML estimate of 𝑝 is over-estimated in the 
unimodal and bimodal cases. In addition, the ML 
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estimates of 𝜆 and 𝑘 are under-estimated according 
to the unimodal and bimodal cases. Besides, we can 
see that the estimated bias of the model parameters 
are over-estimated in some cases and under-
estimated in other cases according to the estimation 
method. Also, Table 3 shows that the GMM and ML 
estimates of the unknown parameters satisfy the 
consistency, as the MSE decreases as 𝑛 increases. 
However, based on the value of the relative  
efficiency, it can be seen that the GMMEs of the 
unknown parameters are better than the MLEs, as 
they have ewer MSEs. In Table 4, we calculate the 
average length of the confidence intervals based on 
1000 replications, and the value of the average length 
decreases as the sample size increases, as the interval 
becomes narrower. Further, the average length 
increases when the confidence level increases and the 
confidence interval become wider. 
 
6 Data Analysis 
In this section, we use a real dataset to compare the 
MLIWD in data fitting versus other mixtures such as 
a Weibull mixture (WM), a Lindley mixture (LM) 
and an inverse Weibull mixture (IWM). Application 
will be considered to show a better fit mixture than 
other mixtures.  
 
Application 
The dataset considered in this application consists of 
the survival times (in days) of 72 guinea pigs 
infected, as reported by [7]. Therefore, we use this 
real dataset to show that the MLIWD can be a better 
mixture than other mixtures. Table 5 shows the MLE 
of the unknown parameters, the AIC and the statistic 
value of the K-S test with a p-value.  
Table 5: Results for Application  

Model MLE AIC K-S 
(p-value) 

MLIWD 
𝑝̂ = 0.2994 

𝜃̂ = 0.8494 

𝑘̂ = 2.8788 

𝜆̂ = 0.7689 

192.182 
0.0652 

(0.9195) 

MTLD 𝑝̂   = 0.4882 

𝜃̂1 = 0.8681 

𝜃̂2 = 0.8682 

219.8569 
0.2466 

(0.0003) 

MTIWD 𝑝̂   = 0.1062 

𝑘̂1 = 1.0557 

𝜆̂1 = 2.7595 

𝑘̂2 = 2.5178 

196.8675 
0.0654 

(0.9175) 

𝜆̂2 = 0.7512 

MTLWD 𝑝̂ = 0.2980 

𝜃̂ = 0.6834 

𝛽̂ = 2.6300 

𝛼̂ = 1.7227 

197.7033 
0.0913 

(0.5855) 

As can be seen from Table 5, the mixture of the 
MLIWD fits the data better than the other mixtures 
according to the AIC criteria and the K-S test. In 
Figure 3, we have plotted the histogram and the 
ECDF for the data application.  
 

 
Figure3: Histogram and ECDF plots for application 
 
7 Conclusion 
In this paper, we proposed a mixture LIWD. The 
essential statistical properties of the proposed 
mixture LIWD include the mean, mode, variance, 
median, measures of Sk and Kur and the behavior of 
the HRF with some graphs of the pdf and HRF. The 
GMM and MLM were used to estimate the unknown 
parameters of the MLIWD. Moreover, some 
simulation studies were performed in order to explore 
the performance of the estimares through estimation. 
In addition, the efficiency of the simulation studies 
was determined based on the reported MSE and RE 
values, the average length of the estimated CIs and 
the percentage of the coverage probability. In 
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general, we observed from the simulation results that 
when the sample size increases, the mean squared 
error decreases; which satisfies the consistency from 
which we can see the asymptotically consistent 
property of the estimates. We also found that the 
GMM provides better results for estimating model 
parameters than the ML method according to the 
MSE and RE values for both the unimodal and 
bimodal cases. We also presented two different 
numerical examples for the MLIWD that considered 
the unimodal and bimodal cases and estimated the 
unknown parameters of the underlying mixture 
model with their standard errors using the GMM and 
ML estimation. Finally, we illustrated a real data 
application in Survival analysis. We conclude that the 
MLIWD is a reasonably good model to fit the data 
from different applications compared to other 
mixture models such as the MTWD, the MTIWD, the 
MLWD and the MTLD based on the AIC criteria and 
the K-S test with a p-value. 
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Table 3: Bias, MSE and RE of the MLIWD estimated parameters 

 𝛩
= (𝑝, 𝜃, 𝜆, 𝑘) n 

GMM ML 
RE 

Bias & MSE Bias & MSE 

𝑝̂ 𝜃 𝜆̂ 𝑘̂ 𝑝̂ 𝜃 𝜆̂ 𝑘̂ 𝑝̂ 𝜃 𝜆̂ 𝑘̂ 

(0.25, 0. 5, 
0.75, 2.25)* 

30 0.5438 0.2250 0.9776 -1.1710 0.7582 0.4586 -
0.7452 

-2.1387 
1.9370 

 
1.4375 

 
5.5852 

 
3.2742 

 
0.2968 0.0512 0.0998 1.3971 0.5749 0.2272 0.5574 4.5744 

50 0.4777 0.2034 -
0.2611 

0.3463 0.7440 0.4172 -
0.7459 

-2.0697 
2.8971 4.5148 7.9063 35.6769 

0.2284 0.0439 0.0704 0.1201 0.5545 0.1982 0.5566 4.2848 

100 0.4373 -
0.0674 

-
0.1071 

0.3034 0.7423 0.3168 -
0.7159 

-2.0291 
2.4133 21.9241 38.9015 44.5119 

0.1914 0.0079 0.0132 0.0926 0.5512 0.1732 0.5135 4.1218 

(0.70, 0.75, 
1.25, 

4.25)** 

30 -
0.0232 

0.1014 0.6156 -0.5512 0.2097 -
0.6094 

-
1.1954 

-0.7435 
1.1147 9.4670 3.2413 1.4675 

0.0401 0.0454 0.4409 0.3769 0.0447 0.4298 1.4291 0.5531 

50 -
0.0312 

0.0659 0.6118 -0.5270 0.2003 -
0.5426 

-
1.1950 

-0.7374 
1.3441 15.4879 3.4319 1.6749 

0.0311 0.0248 0.4161 0.3251 0.0418 0.3841 1.4280 0.5445 

100 -
0.0253 

0.0374 0.5862 -0.5058 0.1987 -
0.5243 

-
1.1949 

-0.7349 
2.1925 25.4726 3.6573 1.7802 

0.0187 0.0146 0.3904 0.3039 0.0410 0.3719 1.4278 0.5410 

                    *Unimodal case.  **Bimodal case.  

                     Relative Efficiency (RE) = 𝑴𝑺𝑬𝑴𝑳(𝜣̂)

𝑴𝑺𝑬𝑮𝑴𝑴(𝜣̂) 
. 
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Table 4: Average length of the estimated CIs for the MLIWD  

 𝛩
= (𝑝, 𝜃, 𝜆, 𝑘) n 

Estimation Methods 

GMM ML 

Confidence Level Confidence Level 

90% 95% 90% 95% 

𝑝̂ 𝜃 𝜆̂ 𝑘̂ 𝑝̂ 𝜃 𝜆̂ 𝑘̂ 𝑝̂ 𝜃 𝜆̂ 𝑘̂ 𝑝̂ 𝜃 𝜆̂ 𝑘̂ 

(0.25, 0. 5, 
0.75, 2.25) 

30 0.0199 0.0246 0.1238 0.0968 0.0238 0.0374 0.1475 0.1153 0.0144 0.0119 0.0168 0.0260 0.0172 0.0142 0.0182 0.0291 

50 0.0065 0.0234 0.0222 0.0076 0.0078 0.0279 0.0264 0.0091 0.0144 0.0119 0.0168 0.0222 0.0172 0.0142 0.0182 0.0264 

100 0.0048 0.0192 0.0135 0.0063 0.0057 0.0229 0.0160 0.0075 0.0041 0.0097 0.0103 0.0160 0.0049 0.0115 0.0123 0.0191 
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